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ABSTRACT

Parallel computing is the wave of the future. As the need for computational power
increases, one processor is no longer sufficient to achieve the speed necessary to solve
today's complex problems.

The Air Force Space Command (AFSPACECOM) tracks approximately 8000
satellites daily; the mode! used by the AFSPACECOM, SGP4 (Simplified General
Perturbation Model Four), has been the operational model since 1976. This thesis
contains a detailed discussion of the mathematical theory of the SGP4 model.

The tracking of a satellite requires extensive calculations. The satellite can be
tracked more efficiently with parallel processing techniques. The principles developed
are applicable to a Naval ship tracking mulitple incoming threats; the increase in the
speed of processing incoming data would result in personnel being informed faster and
thus allow more time for better decisions during combat.

Three parallel algorithms applied to SGP4 for implementation on a Parallel
Virtual Machine (PVM) are developed. PVM is a small software package that aliows a
network of computer workstations to appear as a single large distributed-memory parallel
computer. This thesis contains a description of several algorithms for the implementation
on PVM to track satellites, the optimal number of workstations, and methods of
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I. INTRODUCTION

The goal of this thesis is to illustrate how a network of IPX Sunstations can be used as a
parallel computer to solve a complex military requirement of tracking 8000 earth satellites daily.
Paralle] processing has already been used in Global Climate Modeling, Superconductivity,
Seismic Imaging, and many other important applications in science today. Additionally, there are
other important military applications where the use of paralicl computing would be extremely
advantageous. For example, today's Weapon Control Systems like AEGIS has enormous
computational requirements to detect and destroy incoming threats. The use of separate
computers located at individual enclaves versus a centrally located computer will reduce the
vulnerability of a ship should it take a direct hit in the computer station. The necessary
computing power will be continued by choosing unaffected stations; additionally, the increase in
speed of processing incoming data would result in faster informed personnel and thus allow
more time for better decisions during combat.

Parallel computing is the wave of the future. As the need for computational power
increases daily, due to an increase in technological developments, one processor is no longer
sufficient to achieve the speed in computations necessary 1o solve today's problems.

Two ways one can achieve greater computational efficiency with parallel processing are

1. Purchase a computer developed solely for parallel processing applications
or
2. Usec existing workstations found in most companies today.
The first option requires the purchase of a computer like the INTEL iPSC/2 Hypercube

multicomputer.




The INTEL iPSC/2 Hypercube at Naval Postgraduate school was purchased in 1987 for about
$100,000.00; the Hypercube requires an additional $6000.00 per year to maintain, it is used
solely for research projects.

The second option, the use of existing workstations, requires only that one be willing to
utilize the power of idle workstation's CPU to achieve computational efficiency by dividing a
complex problem into smaller more manageable data components.

The average computer user in the workplace today does not require 100 % of the CPU's
power each hour of the day; additionally, at night the workstations remain idle until one logs in
the next morning or after the weekend.

The utilization of thousands of existing processors to solve problems with enormous
computational requirements will be common ﬁcﬁu in the future. The price/performance
advantage of this practice has not yet been fully realized; however, tomorrow’s scientist will
wonder how we achieved the advances in science and technology today with the use of serial
processing alone.

Once one realizes that there is a storechouse of computer power ready to be distributed
freely, the next step is to learn how to utilize this power. This thesis will illustrate how a network
of workstations can be used to increase the speed at which satellites are tracked. This work will
become increasingly more important as the number of objects tracked daily steadily increases
and the number of calculations required skyrockets.

This is a continuation of the Parallel Processing Orbital Prediction work conducted at
Naval Postgraduate School in the Mathematics Department orchestrated by Professors D.A.

Daniclson and B. Neta. In June 1992, Warren E. Phipps, Jr. developed several paraliel




algorithms for the Naval Space Surveillance Center's analytic satellite motion model. The model
is implemented in the FORTRAN subroutine PPT2. The algorithms were implemented on the
INTEL iPSC/2 Hypercube (Phipps, 1992). In March 1993, Sara Ostrom studied the paraliel
computing potential of the Air Force Space Command analytic satellite motion model
implemented on the INTEL iPSC/2 Hypercube (Ostrom, 1993). Currently, Leon Stonc is
implementing paraliel algorithms for the Navy's Satellite model using Parallel Virtual Machines.
This body of work is the result of the implementation of the Air Force Space Command's
analytic satellitc model, SGP4, using Parallel Virtual Machines.

Chapter II discusses the advantage of the Parallel Virtual Machine (PVM) in terms of
cost, availability and fault tolerance factors. be history and components of PVM are discussed
followed by a brief overview of a new extension to PVM called HeNCE. The chapter concludes
with a short discussion of other parallel software packages available like Express, P4, and Linda.
Chapter I describes the Air Force Space Command's analytical models SGP and SGP4 and
describes, in detail, the theory behind the prediction of a satellite's position and velocity.
Chapter IV describes three algorithms developed to study the parallelization of the satellite
computer code; additionally, a comparison of the each algorithm's performance is analyzed in

detail. The l.st chapter, Chapter V, contains conclusions .nd suggestions for further research.




II. PARALLEL VIRTUAL MACHINE

In this chapter, the advantages of using a Parallel Virtual Machine (PVM) in
terms of cost, availability, and fault tolerance factors will be discussed. The history and
components of PVM will be covered followed by a brief overview of a new exteasion to
PVM called the Heterogeneous Network Computing Environment (HeNCE). Finally,
other softwarc packages like Express, P4, and Linda will be briefly described. Thisis a
synthesis of papers written about the Parallel Virtual Machine (see Dongarra, Geist,
Mancheck, and Sunderman ,1993).

Parallel Virtual Machine is a small sc Iware package (~ Mbyte of C source code)
that allows a heterogeneous network of Unix-based computers to appear as a single large
distributed-memory paralic] computer. The PVM package is good for large-grain
parallelism; that is, at lcast 100K bytes/node. The term virtual machine is used to
designate a logical distributed-memory computer and host is used to designate onc of the
member computers.

The PVM software supplies the functions to automatically start up tasks on the
virtual machine and allows the tasks to communicate and synchronize with each other.
Note, a task is a unit of computation in PVM and is analogous to a UNIX process.

A problem can be solved in paralic] by sending and receiving messages to
accomplish multiple tasks. Thesc message-passing constructs arc common to most

distributed-memory computers. By sending and receiving messages, multiple tasks of an




application can cooperate to solve a problem in parallel. The applications can be written
in Fortran 77 or C.

PVM handles all message conversion that may be required if two computers use
different data representations. PVM also includes many control and debugging features in
its user-friendly interface. For instance, PVM ensures that error messages generated on a
remote computer are displayed on the user's local screen.

PVM allows these application tasks to choose the architecture best suited to the
solution. PVM also supports heterogeneity at the machine and network levels.

At the machine level, computers with different data formats are supported as well as
different serial, vector, and parallel architectures. At the network level, different network
types can make up a Parallel Virtual Machine, for example, Ethernet, Fiber Distributed
Data Interface (FDDI), token ring, etc.

Users of PVM can also configure their own paraliel virtual machine, which can
overlap with other users’ virtual machines. Configuring a personal parallel virtual
machine involves simply listing the names of the machines in a file that is read when
PVM is started.

A. ADVANTAGES OF PYM

The first advantage of using PVM is a reduction in cost, it is and will continue to
be costly to allocate large computing resources to each and every user. The beauty of
using workstations for parallel processing is that a user of a workstation may not use the

machine all the time, but may need more than what a single workstation can provide




when applications are to be run. Many scientists are discovering that their computational
requirements are best served not by a single, monolithic machine but by a variety of
distributed computing resources, linked by high-speed networks.

The second advantage in network-based concurrent computing is the ready
availability of development and debugging tools. Typically, systems that operate on
loosely coupled networks permit the direct use of editors, compilers, and debuggers that
are available on individual machines; also, users arc already familiar with the use and
individual idiosyncrasies of each tool so that learning new skills is not necessary.

The third advantage is the potential fault tolerance of the network(s) and the
processing clements. Most multiprocessors do not support such a facility; hardware or
software failures in one of the processing elements often lead to a complete crash.
Additionally, it is the opinion of the author, that for Naval applications using different
workstations in different arcas of a Naval ship can reduce vulnerability should the ship
take a direct hit in a critical arca. The computing power needed for a combat system like
Acgis could be continued by choosing unaffected stations.

A study conducted by Eichelberger and Provencher (1993) explored using PVM
to model a survivable AEGIS combat system for a CG47 Ticonderoga class AEGIS
cruiser model. Present naval combat systems possess only manual reconfiguration and
static rudimentary automatic reconfiguration schemes. The study concluded that there is
a significant improvement in mission readiness when using a reconfigurable computer
architecture.




B. HISTORY OF PYM

In the summer of 1989, at Oak Ridge National Laboratory (ORNL), the
development of PVM software began and is now distributed freely in the interest of the
advancement of science around the world. The driving force behind the initial
popularity of PVM was the ability to get an excellent price performance ratio- better than
any other computer system in the world. In general, a cluster of about 10 high
performance workstations is potentially capable of solving a problem as fast as a
supercomputer costing 20 times more; thus, PVM is rapidly becoming a de facto standard
for distributed computing. How did all this begin? The following is a brief history of

PVM's creation and it's creators:

Summer 1989: Vaidy Sunderam designed and implemented the first version of
Parallel Virtual Machine while visiting Oak Ridge National
Laboratory.

Summer 1990: Vaidy Sunderam and Al Geist refined the PVM software to
develop a Fortran interface and several parallel applications;
additionally, a graphical interface called XPVM was developed.

November 1990: Al Geist developed a PVM version of large material science
application code run on a network of IBM RS/6000's which won
the 1990 Gordon Bell Prize for best price/performance ratio of any

application in the world.




December 1990:

March 1991:

Summer 1991:

December 1991:

February 1992:

Summer 1992:

February 1993 :
April 1993:

August 1993:

Sunderam and Geist entered their PVM research into the 1990
IBM Supercomputer competition and won first prize.

PVM 2.0 was developed by Bob Mancheck from PVM 1.0 - the
carlier research version. PVM 2.0 was made publicly available
through netlib@oml.gov.

Sunderam, Geist, and Manchek began working on the design
features of PVM 3.0 such as dynamic configuration and new
routine names. Additionally, a digest for users to exchange
information was set up at pvmlist@mathcs.emory.edu.

Beguelin began the development of a new software package called
Xab, a monitor and debugger for PVM programs. This version can
be obtained by contacting adam@cs.cmu.edu.

PVM 2.4 was released and HeNCE was made available through
netlib@oml.gov.

Geist and his student developed a package built on top of PVM 2.4
that dynamically load balances a users application.

PVM 3.0 released.

PVM 3.1 released.

PVM 3.2 is released.To receive this software send email to
netlib@oml.gov with the message: send index from pvm3

or ftp from netlib2@cs.utk.edu directory pvm3.




C. COMPONENTS OF PYM

The PVM system is actually composed of two parts , the daemon and a library of
PVM interface routines.

The dacmon is called pvmd3 (sometimes abbreviated pvmd) and resides on all the
computers making up the virtual machine. Any user with a valid login can install this
daemon on a machine. When the user desires to run a PVM application, he/she executes
pvmd3 on one of the computers which in turn starts up pvmd3 on each of the computers
making up the user-defined virtual machine. A PVM application can then be started
from a Unix prompt on any of these computers.

The library of PVM interface routines contains routines for passing messages,
spawning processes, coordinating tasks, and modifying the virtual machine. The user can
call any of these routines and application programs must be linked with this library to use
PVM.

D. APPLICATIONS

A variety of applications have been developed over the past few years using
PVM. Below is a partial list of some of these applications:

Material Science
Global Climate Modeling
Atmospheric, oceanic, and space studies
Meteorological forecasting
3-D ground water modeling

Superconductivity, molecular dynamics
Monte Carlo CFD application
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2-D and 3-D scismic imaging

3-D underground flow ficlds
Particle simulation

Distributed AVS flow visualization

. & &

As a result of this thesis , one can add Orbital Prediction to this list.

Application programs are composed of subtasks (or components) at a moderate
level of granularity. The programs view the PVM system as a general and flexible
paralle] computing resource which may be accessed at three different modes:

1. Transparent - subtasks are automatically located at the most
appropriate sites.

2. Architecture-dependent - subtasks specific for architecture execution are
chosen by the user.

3. Machine-specific - subtasks are located on a particular machine to

exploit particular strengths of individual machines.

During execution, multiple instances of each component or subtask may be

initiated. Figure 2.1 on the next page illustrates a simplified architectural overview

of the PVM system (see Geist and Sunderman , page 3, 1993) .
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Application 1

Component Instances Application 2
S5oese] O3

PVM SYSTEM

LAN1l'sun Cube SMM | LAN2 Sun X wrielly

Cray

\. J
Figure 2.1 Simplified Architectural Overview of PVM

Application programs under PVM may possess arbitrary control and dependency
structures; that is, at any point in the execution of a concurrent application, the processes
in existence may have arbitrary relationships between each other and any process may
communicate and/or synchronize with any other. Any specific control and dependency
structure may be implemented under the PVM system by appropriate use of PVM
constructs and host language control flow statements.

Multiprocessing on loosely coupled networks provides facilities that are normally
not available on tightly coupled multiprocessors. For example, debugging support, fault
tolerance, and profiling and monitoring to find hot-spots or load imbalances within an

application.
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The disadvantages associated with networked concurrent computing are
generating and maintaining multiple object modules for different architectures,
considerations of security into personal workstations, and other administrative functions.
PVM supports two auxiliary components that provide some features to overcome these
disadvantages. First, the HONCE interface is a graphical based parallel programming
paradigm. Second, PVM is undergoing extensions to make PVM work on MPP
machines which it now does on several made by Intel, TMC, Cray, and Convex with
KSR and Sequent underway ( Geist, 1993).

E. HETEROGENEOUS NETWORK COMPUTING ENVIRONMENT (HeNCE)

HeNCE simplifies the writing of paralle] programs and was developed with two
goals in mind :

1. Make network computing accessible without the need for extensive training in
parallel computing
and
2. Make the resources best suited for a particular phase of the computation available
to the users.

In HeNCE the programmer explicitly specifies parallelism of a computation by
drawing graphs. The nodes in a graph represent user defined subroutines (written in
cither FORTRAN or C) and the edges indicate parallelism and control flow. HeNCE will
automatically execute the subroutines in parallel (whenever possible) across a network of

heterogeneous machines. HeNCE relies on the PVM system for process initialization

12




and communication. If onc wishes to write explicit message passing parallel programs
on a network of machines they should use the PVM system directly.

Once the graph is complete, HeNCE will automatically write the paralle]l program
including all the communication and synchronization routines using PVM calls. HENCE
tools exist to assist the user in compiling this program for a heterogeneous environment.

HeNCE is composed of five integrated graphical tools. Below is a brief
explanation of each tool:

1. Compose - use to specify the parallelism of an application by drawing a

graph illustrating dependencies between procedures

2. Configure - useto specify a network of heterogeneous computers to be
used as the PVM and defines a cost matrix between machines
and procedures

3. Build - use to compile and install the procedures written by the
compose tool

4. Execute - use todynamically map procedures to machines for execution
of the application and collect tracing information

5. Trace - use to read the trace information and display an animation of

the execution, cither in real time for debugging or later for

performance analysis.
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An initial version of HeNCE is available through the net/ib. To obtain HENCE
scad email to netlib@oml.gov and next to subject one should type: sead index from
hence; any problems with HeNCE can be addressed to: hence@msr.epm.ornl.gov.

F. OTHER SOFTWARE PACKAGES

Various other software packages have been developed that enable scientists to
write heterogeneous programs; these, as well as PVM, have evolved over the last several
years, but none of them can be considered fully mature. It is an exciting time in
paralic]l computing and there are many grand challenges for scientists to explore.

I would like to briefly discuss some of the other software packages, in order that
the reader will be familiar with their names and features (see Dongarra, 1993).
Examples of such other software packages include Express, P4, and Linda, however, it
is important to note that these packages are by no means the only ones in existence. Each
package is layered over the native operating systems, exploits distributed concurrent
processing, and is flexible and general-purpose; all exhibit comparable performance.
Their differences lie in their programming model, their implementation schemes, and
their efficiency.

Express toolkit is a collection of tools that individually address various aspects of
concurrent computation. The toolkit is developed and marketed commercially by
ParaSoft Corporation, a company started by some members of the Caltech concurrent
computation project. Express is based on beginning with a sequential version of an
application and following a recommended development life cycle culminating in a

14




parallc] version that is tuned for optimality. The core of thc Express system is a set of
libraries for communication, IO, and paraliel graphics.

P4 is a library of macros and subroutines developed at Argonne National
Laboratory for programming a variety of parallcl machines. P4 supports both the
shared-memory model and the distributed-memory model. In the process management
mechanism in P4 there is a "master” process and "slave” processes, and multilevel
hicrarchies may be formed to implement what is termed a cluster model of computation.
Shared Memory support via monitors is a distinguishing feature of P4; however, this
feature is not distributed shared memory, but is a portable mechanism for shared address
space programming in true shared memory multiprocessors. A set of macro extensions
was developed at GMD (Gesellschaft fiir Mathematik und Datenverarbeitung in Schloss
Birlinghoven, Gemany) called Parmacs. Parmacs provided Fortran interfaces and a
variety of high-level abstractions dealing with global operations to the P4 system.

Linda is a concurrent programming mode] that has evolved from a Yale
University research project. The primary concept in Linda is that of a “tuple-space”, an
abstraction via which cooperating processes communicate. The tuple~space concept is
essentially an abstraction of distributed shared memory, with one important difference
(tuple-spaces are associative), and several minor distinctions (destructive and
non-destructive reads, and different coherency semantics are possible). Applications use
the Linda model by embedding constructs that manipulate the tuple space. Recently, a

new system technigue has been proposed, at least nominally related to the Linda project.
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This scheme, termed "Pirhana” proposcs a proactive approach to concurrent computing
where resources seize tasks from a well known location based on availability and

suitability.
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III. SGP AND SGP4

A. SIMPLIFIED GENERAL PERTURBATION MODEL(SGP)

The original model used by the Air Force Space Command to track satellites was
the Simplificd General Perturbation mode! (SGP). The model was simplified by the
exclusion of perturbation effects caused by higher order terms in the Legendre expansion
of the Earth's gravitational potential or other celestial bodies like the moon or the sun.
The model also assumed the drag effect on mean motion as linear in time; this
assumption dictated a quadratic variation of mean anomaly with time. The drag effect on
eccentricity was modeled such that the perigee height remained constant (Hoots and
Rochrich (1980), page 2).

These simplifications allowed an analytic solution to the equations of motion.
Although the solutions are not as accurate as numerical techniques, they are
computationally less expensive. Semi-analytic models increase the accuracy while
decreasing the computational cost. See Dyar (1993) for comparison of various models in
terms of accuracy and computer time required on a Sun Sparc 10.

Hilton and Kuhlman (1966) developed the analytical SGP model. SGP's
gravitational submodel is a simplification of the work done by Kozai (1959) and Brouwer
(1959). For a more detailed discussion of the SGP model sec Hoots and Rochrich (1980)

and Sara Ostrom (1993), pp. 10-20.
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B. SIMPLIFIED GENERAL PERTURBATION MODEL FOUR (SGP4)

1. Overview

The second model, SGP4, was obtained by a simplification of a more extensive
analytical theory developed by Lane and Cranford (1969) which uses the solution of
Brouwer (1959) for its gravitational model and a power density function for its
atmospheric model [Hoots and Rochrich (1980), p.2]. SGP4 bad replaced SGP as the
operational theory at the AFSPACECOM by 1976.

The SDP4 extension to SGP4 was developed to be valid for deep-space satellites.
The deep-space equations were developed by Hujsak (1979). SDP4 models the effects of
the moon and sun in addition to certain sectoral and tesseral Earth harmonics that
become important for half-day and one-day period orbits.

The SGP4 and it's extension, SDP4, are both analytical models. They identify
variations in terms of changes in the osculating elements with respect to time. The
models are more accurate than the original SGP model due to two factors:

1. The inclusion of zonal harmonics through J, ; whereas, the SGP model
only included zonal harmonics through J,.

2. The inclusion of a drag force in the equations of motion versus the linear
simplification of the SGP model.
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The main program, DRIVER reads the input and calls cither SGP4 or SDP4. If
the satellite is "near-carth” (e.g., orbital period less than 225 minutes) then SGP4 is
called; otherwise, the satellite is classified "decp-space” and DRIVER calls SDP4.

SGP4 and SDP4 receive input from the DRIVER and perform calculations
necessary to return to the DRIVER the position and velocity vector in units of earth radii
and minutes. The DRIVER performs a unit conversion to kilometers and seconds for
printout.

SGP4 and SDP4 both call two functions, ACTAN and FMOD2P. ACTAN is
passed the values of sine and cosine and retumns the angle in radians in the range of

0 to 2n. FMOD2P is passed an angle in radians and returns the modulo by 2n of that
angle.

Additionally, SDP4 calls the subroutine DEEP. The first time DEEP is called
certain constants already calculated in SDP4 are passed through an entry called DPINT.
All initialized quantities nceded for deep-space prediction are calculated. At this time, it
is also determined whether the orbit is sychronous or if the orbit experiences resonance
effects. During initialization, the subroutine DEEP calls the function THETAG. The
function THETAG obtains the location of Greenwich at epoch and converts epoch to
minutes since 1950.

The next time SDP4 calls DEEP occurs during the secular undate portion and is
via the entry DPSEC. The secular update portion of SDP4 is where additional secular

and long-period resonance effects are added to the values of the "mean” orbital elements.
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The final access to DEEP occurs via DPPER where the appropriate decp-space

lunar and solar periodics are added to the orbital clements.

2. Input Parameters

The SGP4 model uses the six orbital elements, a drag factor, and an epoch

reference time to predict the satellite position and velocity vectors at a future time.

The six orbital clements are "mean" values obtained by removing periodic

variations in a particular way. The clements are given below along with the name

assigned to each in the SGP4 Fortran computer code:

[VARIABLE NAME SYMBOL IN THEORY COMPUTER CODE
PMean Motion at Epoch no XNO
{Ecceatricity e EO
lination of Orbital Planc fo XINCO
the Equator
ight Asceasion of the Q, XNODEO
i g Node
P\:gmcm of Perigee ©, OMEGAO
Anomoly at Epoch M, XMAO

Table 3-1 Classical Orbital Elements

The following diagram will be useful throughout this discussion in visualizing

the satellites orbit and the angles given in table 3-1 above:
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E = eccentric anomaly
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Figure 3.1 Classical Orbital Elements
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3. PROGRAM SEQUENCE FLOW
The ten main steps 10 solve for position and velocity vectors are as follows:
1) Recover original mean motion and semimajor axis from the input clements.

2) If necessary, update the parameter for the SGP4 density function.

3) Calculate constants using appropriate values of the density function from
step two above.

4) Account for the secular effects of atmospheric drag and gravitation.

5) Add the long periodic terms.

6) Solve Kepler's equation.

7) Calculate the preliminary quantitics needed for short periodics.

8) Update the osculating quantities using the short periodics.

9) Calculate the unit oricntation vectors.

10) Calculate the postion and velocity vectors.
The SDP4 model follows these same steps with the addition of several calls to the

subroutine DEEP which was discussed earlier.

C. EQUATIONS
This section will describe the equations developed by Hoots and Rochrich (1980),
pp. 14-37 . The ten main steps listed above will serve as the outline of the discussion.

A strict parallel structure exists between the computer code and the equations.




1. Recover Original Mean Motion and Semimajor Axis
The input variable for mean motion (n,) requires modification after which it is

denoted by n,". This modification to n, is accomplished as follows:

1) n'= : Ts relationship of n”/ to n,

where
3k,(3 cos?i, — 1)

80 =
e a1 - ety

2
b.k;:’]z—;""- J2= the second gravitational zonal harmonic of the earth
a2 = the equational radius of the earth squared

c.a.,:a,(l--!-S,—Sf—-

13483)
3

81

_ 3ky(cos?i, ~ 1)
2a}(1 - €2)*?

d s,

273
ca= (—:—5) where £, = ,/GM,G is Newton's universal gravitational
constant and M is the mass of the Earth.

Qo

2) To recover the semimajor axis use a/ = 148

where 8, is the same as above.

2. Update The Parameter for the SGP4 Density Function
Two parameters, s and g, , for the SGP4 density funcion may require

adjustments. The scale height parameter constant used by SGP4 is
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s =1.01222928 carth radii (¢r); s changes depending on the height of the satellite at
perigee. For perigees between 98 kilometers and 156 kilometers s is replaced by s ,
where s* = a(1 - e,)-s+ag with units of earth radii and where perigee height is
calculated by perigee = [a?(1 - e,) — ag] ® Re (kilometers) and R is the spherical
carth radius.

For perigees below 98 kilometers, s is replaced by s¢ where

s =20

= — = . Kilometers/Earth radii
YEMPER +ag XKMPER = 6378.135 radii

It should be noted that if s is changed then a term (go—s)' is also replaced
by (go-s*)".

From this point on, the double-prime notation will be dropped for the mean

motion and the semimajor axis, as well as the * on 5. It will be understood

that these corrections have already been made when the symbols », , a,
and s are used.

3. Calculate Constants
a. The following constants are calculated for both SGP4 and SDP4:

6 =cosi,

g=a.,l—.s'

Bo=(1- ‘3)1,1
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N=aoef

Ch =B..Cz B‘=dmgooefﬁcient

C2=(go = )8 (1 -n?) "2 [a,(1 + 30 + den + €'+

3kt (1.3
v ) (—2 + 59’)(8 +24n? +3n"))

Ca = 210(go - )*E*aoBo(1 - n?) e
(2001 - e+ oo+ 1) - ;—zzlfj—%,-; «[31-30)1 + 3n? - 2e0n - dean®)
+2(1- 020’ - eon - eon’)c0s 20013
b. The following constants are calculated by SGP4 only for perigees above 220
kilometers:

(o — 5)*E*A3on.agsini,

C3 = kzeo

where As,o =-J 302

Cs = 2(go - )*E*a.B(1 - n?)""?[1+ Ln(n + e.) + e,n’]

D; = 4a,tC3

Ds= ga.,c’ma, +5)C}

Ds= %a,;’(ZZla, +315)C!
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4. Secular Effects of Atmospheric Drag and Gravitation
M, ,0, ,and Q, are updated as follows:

a. First, Mpr , ©pr ,and Qpr are calulated:
1) Mpr=M, + MAt

2) OpF = @0 + @ Af

3)Qor = Q6 + szt

where Ar= t — 1, = time since epoch and

o [ 3k(-1+30%) 3k2(13 - 7807 + 1370%)
M=]1+ 24P} + 16aip] on,

+
2a3p; 162385 4a3B;

o _[3k0-50%) 3711462439569 Sky(3 - 3607 +49e‘)1 .

. - 2040 — 3 ~-79?
O - 3k,0 + 3k5(46 - 196°) + 5k46(3 - 76°) on,
2a;B; 2a5B; 2a38;

Recall that , k; = %Jzaﬁ- J, = the second gravitational zonal harmonic of the Earth

and ke = %Jm} J = the fourth gravitational zonal harmonic of the Earth
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Note : this is the point in SDP4 where the DEEP initialization for deep-space

calculations is entered through DPINT discussed carlier.

b. Then M, , ® , and Q are calculated by
1) M, = Mpr + 80 + M
2) © = Opr - S0 - M

3) @ = Qor - = g7

If perigec is less than 220 kilometers
So=8M=0
otherwise,
8w = B*C;(cosw,)Al

8M = Z2(go - ' B LE[(1 + noosMpr) - (1 + noosMo)']

Note: At this point SDP4 calls the secular portion of DEEP via DPSEC to add
the deep-space secular effects and long-period resonance effects to the

six orbital elements.

¢. Next, e , a , and the mean longitude, L , are updated as follows:
1)e=e, - B'C,Ar — B*°Cs(sinM, — sinM,)
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2)d=d¢[l - CAf - DzAl‘z - D3N3 - D4Al‘]z
NL=My+0+Q+ n.'[-%CnAtz + D2+ 2CHAP

+%(303 + 12C1D; + 10CHAr
+%(3D4 +12C1D;s + 6D? + 30C3D, + 15CYHAr%]

If the perigee height is less than 220 kilometers then q and L equations are

truncated after the C; term and the equation for e is truncated after the C, term.

d. The last step in this section is to calculate p and n : ‘

)p=J1-¢ |
k.
2)n=a—35

Note: At this point SDP4 calls the periodics section of DEEP via DPPER to add

the deep-space lunar and solar periodics to the orbital elements.

5. Add The Long Periodic Terms
The addition of long-periodic zonal effects are accomplished by the following:

& axw = ecos

_4A 308in i,

b. av = esino + where,
w ane akzap?
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axv and ayy are the horizontal and vertical components, respectively, of the
eccentricity vector with respect to the line of nodes vector. The following figure

illustrates the geometry of the components:

r )

Satellite's Orbit

Force Center

N Y

Figure 3-2 Geometry of Eccentricity Vector and Node Vector

The mean longitude is then calculated by:
Lr=L+1L;

A3.Osinio 3+56
where, L= q .
L= "8k,ap? ""( 1+e)

Recall that L was calculated in the previous section.
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6. Solve Kepler's Equation

Solve Kepler's equation by a method of successive approximations.

Let U=Lr-Q

and U = (E + @), the first term in the iteration of the sum of the eccentric anomoly and

the resulting argument of perigee. Thus,

for successive iterations, that is

&+ o) = (£ +0) + AE + o),

Let EPW=E+0o then

U - apvcos(EPW); + axvsin(EPW), — (EPW)
~apvsidEPW); — axvcos(EPW); + 1

A(EPW); =

Continue iterations until [A(EPW);| < 1.0 thenset £ + o = (£ + o).

7. Short Periodic Preliminary Calculations
The following equations are the preliminary calculations, the results are added in

section cight to obtain the osculating quantities:

a. ecos E = axncos(EPW) + apvsin(EPW)

esinE = asi(EPW) — amvcos (EPW)
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2

cosu = £[cos(EPW) - axv + apv(esinE) o Temp3]

siny = -‘r![sin(EPW) - amwv - axv(esinE) e Temp3)

Ar =-2%(1 — 0%)cos 2u

Au = -4"—’,(79z ~ Iysin2u
PL

aq = #8450,
2p1
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n. j 3k2° 'm iocos 2“

L

' kzn

Al 0%)sin2y

p. Arf = k’"[( - 0%)cos2u - %(l —-30’)]
8. Update The Osculating Quantities

Now, the short periodic preliminary results are added to obtain the osculating

quantities:

32




9. Caiculate Unit Orientation Vectors
The osculating angles found above are utilized to find the unit orieatation vectors

as follows:
_ -Mx -sinQxcos iy
_Mz sinix
_ PNx cosQx
N= Ny = Banx
| N; 0

then U= A_lsinux +N008ux

and T;= x!oosux—l\—lsinux

10. Calculate The Postion And Velocity Vectors

Finally, the position and velocity vectors are calculated as follows:

r=rxlU

This results in the position and velocity in units of earth radii and minutes. The
postion and velocity vectors are then passed to the DRIVER at which time the unit

conversion to kilometers and seconds is accomplished.
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IV. PARALLELIZATION OF SGP4 USING PVM

OVERVIEW

The goals of this chapter are two-fold:

1. Explain how the Air Force Space Command's satellitc code was parallelized
using the Parallel Virtual Machine and

2. Compare various algorithms in terms of total time, communication overhead,

speedup, and efficiency.
a. Speedup (S, ) is calculated as follows:

T,
Sp=—
T,

where

T, = Endtoend Time on a Single Processor
T, = Endtoend Time on p Processors

Note: Endtoend Time will be the term used to denote the total time to
execute the program not including the time to read the input file.

b. Efficiency is calculated by:

where

Sp = Speedup for p processors
p = Number of processors
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Three algorithms were developed to study the performance of the parallelization
of the satellite code. The algorithms were based upon previous work completed by Ford
and Carvahlo (1993).

Data was collected for each algorithm; each execution time is the result of an
average of ten recorded run times.

Analysis was performed on each algorithm's results by comparing each model's
performance and the use of four, eight, and sixteen nodes to execute the tasks.

It is important to note that with the use of an open network of computers there is
undoubtedly going to be fluctuating machine and network loads. Multiple users and other
competing PVM tasks cause the machine and network loads to change dynamically; thus,
in order to have sufficient balancing, great care was taken to collect data at times where
the load on the system was relatively constant. However, due to the fluctuation of open
networks, the reproduction of the exact data results would be impossible.

In addition to the system load discussed above, onc needs to consider Load
Balancing. Load Balancing refers to the degree to which all nodes are working to solve
the problem at hand. There are generally three types of Load Balancing according to
Geist (1993):

1. Static Load Balancing

The problem is divided into separate tasks which are assigned to the
processors only once. The number or size of each task can be varied

to utilize different computational powers of machines.
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2. Dynamic Load Balancing by Pool of Tasks
This is usually used with a Master and Slave scheme, the master continucs to
deal tasks to idle slaves until the task queue is empty. This results in the faster

3. Dynamic Load Balancing by Coordination

Typically used by Single Program Multiple Data Stream (SPMD) where each
Pprocessor receives a single set of instructions, receives and manipulates data,
and redistributes its work at fixed times.

The second type, Dynamic Load Balancing by a Pool of Tasks, where a Master
and Slave scheme exists was utilized in this research.

The Master/Slave approach is currently a popular distributed programming
scheme. The Master starts all the Slave tasks and coordinates their work and
input/output. All three algorithms developed use a Master/Slave approach.

Two other distributed programming schemes are the "hostless” Single Program
Multiple Data (SPMD) and the Functional schemes (Geist, 1993). The "hostless” SPMD
uses the same program executed on different picces of the problem; whereas, the
Functional scheme consists of several programs each one performs a different function in

the application.
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B. INPUT DATA

Approximately 8000 satcllites are tracked by the Air Force Space Command
(AFSPACECOM) in Colorado Springs daily; thus, a file consisting of 8000 satcllite entrics
was created. Note that the sgame near-earth record and deep-space record was copiod to
generate the 8000 input records.

Each entry or input record consists of twenty-two individual numerical values.
Table 4-1 on the following page illustrates a typical input record used.

Note that the input record used by AFSPACECOM consists of seventeen
individual numerical values (sec Hoots and Rochrich,1980, p.91) . Table 4-2 on page 39
illustrates a typical AFSPACECOM record.

There is a direct correspondence between the first 17 values of the input record
used in this rescarch and the first 16 values of the AFSPACECOM record. The
seventeenth entry in the AFSPACECOM record is the epoch revolutions that have been
recorded since the object was first launched. Note that this information is not used to
calculate the position and velocity vectors of the satellite.

The entrics 18 -22 in Table 4-1 simulate the number of calls made either to SGP4

orSDP4perinputmordaswillbeexplained.htcr.
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275.98708465

0.01431103

0.00000000

0

0.14311

-1

0

2

46.7916

230.4354

0.7318036

47.4722

10.4117

2.28537848

93

276.98708465

93

277.98708465
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Name [Explanation Example
1{Cardno 2 card format 1
2|Satellite number Satellite ID 00603U
3|International 'Year/Launch No./ 193-022B
designator Piece
4|Epoch time Year and day-1st 2 93162.71380248
igits arc the year the
others are the day
Slne . g Mean motion 0.00073094
2 derivative(rev/day?) or
(m’/kg)
6|mean motion dot dot {Mcan motion 2nd 0
erivative/6
7|BSTAR term (er) : the -3]45562-3
is the exponent
8|Ephtype Denotes model : 2is |2
for SGP4
9|Element No [Element number 864
10]Satellite number Satellite number of 00603U
d2
11{i, Inclination 89.8623
12{Q, Right ascension 2459276
13]e, Eccentricity 0006273
14{o, Argument of perigee  [337.4473
15|M, Mean anomaly 22.6464
16|n, Mecan motion (rev/day) | 15.03410461
17|Epoch rev Epoch revolutions 59663

Table 4-2 Typical Input values for AFSPACECOM
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The entry number 17 in Table 4-1 and eatry number 16 in Table 4-2, the mean
motion (XNO), determines whether or not the satellite is a deep-space object. SGP4
propagates data for near-carth satellites which require more frequeat tracking due to the
atmospheric drag factor and SDP4 propagates data for the decp-space satellites.

In order for an object to be classified as deep-space the period must be greater
than 225 minutes. The period is calculated by

For a period greater than 225 minutes XNO must be less than 6.4 since:

7 Bl ) (G )(5) > 2 minaes

Rearrange and solve for XNO

XNO < 1440 min

225 min
That is,
XNO < 64
day

Thus, the example in Table 4-1 illustrates a deep-space satellitc and the example

in Table 4-2 illustrates a near-earth satellite.
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Out of the 8000 satcllite tracked approximately 85 % arc near-carth and 15 % arc
decp-space; therefore, 6800 of the 8000 input records (consisting of 22 elements cach)
were near-carth and the remaining 1200 records were deep-space.

The requirement for more frequent tracking of near-carth satellites was simulated
by requiring 72 calls to the SGP4 subroutine per input record, resulting in 72 output
records generated per input record. If the sateflitc was decp-space the SDP4 subroutine
was called 24 times per input record, resulting in 24 output records generated per input
record. 72 and 24 was choosen to paralle] the work done by Ostrom (1993). The output
record consisted of the time since the last propagation, three components of the position
wvector, and three components of the velocity vector for a total of 7 output data elements
per output record.

To illustrate how this was accomplished, consider the input record in Table 4-1.
The difference between the start year and day is onc day or 1440 minutes. The time step of
60 minutes/call (over s period of 1440 minutes) resulted in 24 calls to the SDP4
subroutine.

C. ALGORITHMS

1. Overview

Three algorithms were considered in order to maximize load balancing and
minimize communication overhead. All three algorithms used PVM to simulate a 2D torus
topology. A 2D torus is like a 2D mesh with the addition of communication links between
the nodes locsted at the "edge” of the mesh.
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2. METHODS
a. Sequential
The Sequential program was developed to be the most efficient obtainable,

in order to ensure the record of speedup values would not be misleading.

(1) Sequential Algorithm

READ DATA FILE
REPEAT
CALL PROPAGATION SUBROUTINE
UNTIL all input records have been converted to position and
velocity vectors
COLLECT timing statistics

The sequential program can be found in Appendix A.
b. Parallel
In the following discussion the term "node" will denote one Unix-based
workstation in a given network;specifically, one SUN microsystem
SPARC station IPX.

In order to maximize the load balancing, a dynamic load balancing method by a
pool of tasks was utilized. One node was designated the "Master” while the other nodes
became the "Slaves”. One of the slave nodes was designated as a collecting node. A
separate collecting node is an advantage over having the master collect, since collection
will begin before distribution is complete. This is also similar to the configuration used
by Phipps (1992) and Ostrom (1993) in their work on parallel orbit prediction on the
INTEL Hypercube.
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When four nodes were utilized one node acted as the master and dealt tasks to two
working nodes to complete. The remaining node acted as the collector by collecting the
results from the working nodes and returning the results to the master. The rescarch
conducted by Ford and Carvatho (1993) concluded that a separate collecting node is a
definite advantage over having the master collect, since collection can begin even before
the distribution is complete.

In a similar fashion, when eight nodes were utilized there was a total of 6 working
nodes and when sixteen nodes were utilized there was a total of fourteen working nodes.

3. Parallel Algorithms

a. Answer Back Method (ABM)

The first approach was to minimize the time a worker spent idle waiting for more
data. The requirement was that the slave notify the master when it had completed it's tasks
and was ready for more data. This would result in the fastest workers processing the most

data. The algorithm for the Master Program is as follows:

READ entire satellitc catalog input file
ENROLL in PVM and spawn n + 1 slaves
DESIGNATE 1 collector and n workers
REPEAT
PACK m scts of satellitc input records
SEND data to worker
UNTIL each worker has m sets each
REPEAT
PACK m sets of satellite input records
WAIT until worker sends ready signal
SEND data to worker
UNTIL all complete sets of m have been sent
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REPEAT
PACK any leflover satellite input records
WAIT until worker sends ready signal
SEND data to worker

UNTIL 8000 input records have been sent

SEND stop signal to workers

WAIT for program complete signal from collector

The algorithm for the Answer Back slave program is as follows:

INITIALIZATION
IF I am the collecting node
REPEAT
WAIT for onec set of results
STORE results
UNTIL all results have been collected from the workers
SEND program complete signal to master
ELSE
I'm a working node
REPEAT
WAIT for data packet from master
REPEAT
UNPACK data
CALL propagation subroutine
PACK results
SEND results to the collector
UNTIL no more input records in the packet
SEND ready for more data signal to the master
UNTIL master sends stop signal
END IF.

The Answer Back program can be found in Appendix A.
b. Successive Deal Methods
The second and third algorithms were developed to decrease the communication

time between the master and slaves. The input records were dealt to the workers in sets




m at a time. After giving cach worker an initial set, the master continued to deal input
records until all 8000 records had been sent.

The successive deal methods are basically the same, the difference lics in the way
the input data is dealt to each worker.

In the second algorithm (Successive Deal Modet I), to study the result of sending
larger data packets, cach worker is dealt an input data set consisting of m records with 22
clements cach. Next, 1/(2*p) of the remaining records are dealt to each worker. Finally,
1/p of the remaining records is dealt to each worker. Note that if any records are lefiover as

a result of the integer division, the leftovers are sent last. For example, if

n = number of data records
m = number of records sent simultaneously

p = number of working processors or nodes
8 = sets of m records to be distributed.

andwelett, n=8000
m=15
p=2

. . . 8000records _
Then, the number of sets to be distributed is s T e/set = 533sets of 15

with 5 input records leftover. Now, a set is sent to cach worker leaving a total of 531 scts
left to be distributed. Next, 1/(2*p) records are dealt to each worker; that is,

(21p)-(ssxms) = 132 scts are given to each worker.

Thus, the number of sets left to be distributed is

s = 531 - (2*132) = 267 scts.
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Next, 1/p records are dealt to cach worker; that is , (1/2)*267 sets = 133 sets are
distributed leaving 1 sct lefiover. Finally, the lefiovers are sent to a worker and all the

input records have been distributed.
In the third algorithm, the Successive Deal Model II, the master deals out onc set

consisting of m input records to each worker. Then, the master continues to deal out data
scts until all the records have been distributed. For example, using the variables defined

abowe, ket

n = 8000

m=15

p=2
then,

_ 8000 records _
% = 18 recordsiset ~ 533sets + 5 records lefiover.

First, one sct is given to each worker, resulting in 531 sets left. Then, the sets would be
distributed, one at a time, first to onc worker and then to the other worker. Last, the
lkeftover records arc sent.

(1) Successive Deal Method 1 (SDI) Algorithm

Master Algorithm
READ entire satellite catalog input file
ENROLL in PVM and spawn n + 1 slaves
DESIGNATE 1 collector and n workers
REPEAT
PACK one sct of m input records
SEND data to worker
UNTIL cach worker has one set
REPEAT
PACK 1/(2*p) records
SEND data to worker
UNTIL each worker has a packet

46




REPEAT
PACK remaining scts
SEND data to worker
UNTIL each worker has a equal packet
REPEAT
PACK leftovers
SEND leftovers
UNTIL all input records have been sent
SEND stop signal to workers
WAIT for program complete signal from collector
GATHER and compute timing statistics from slaves.

Slave Algorithm:

INITIALIZATION
IF I am the collecting node
REPEAT
WAIT for one set of results
STORE results
UNTIL all results have been collected from the workers
SEND program complete signal to master
ELSE
I'm a working node
REPEAT
WAIT for data packet from master
REPEAT
UNPACK data
CALL propagation subroutine
PACK results
SEND results to t+  ~ollector
UNTIL no more inp... records in the packet
UNTIL master sends stop signal
END IF
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(2) Successive Deal Model II (SDII) Algorithm
Master Algorithm:

READ entire satellitc catalog input file
ENROLL in PVM and spawn n + 1 slaves
DESIGNATE 1 coliector and n workers
REPEAT

PACK one set of m input records

SEND one set to cach worker
UNTIL each worker has one set
REPEAT

PACK m sets of input records

SEND data to worker
UNTIL all m sets have been distributed
REPEAT

PACK remaining input records

SEND data to worker
UNTIL all input records have been distributed
SEND stop signal to workers
WAIT for program complete signal from collector
GATHER and compute timing statistics from slaves.

Slave Algorithm:

INITIALIZATION
IF 1 am the collecting node
REPEAT
WAIT for one set of results
STORE results
UNTIL all results have been collected from the workers
SEND program complete signal to master
ELSE
I'm a working node
REPEAT
WAIT for data packet from master
REPEAT
UNPACK data
CALL propagation subroutine
PACK results
SEND results to the collector
UNTIL no more input records in the packet
UNTIL master sends stop signal
ENDIF.
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For the source code of the algorithms discussed above see Appendix A. The
programs developed were written in C. The SGP4 code is written in FORTRAN. The
C framework using a PVM architecture calling a FORTRAN satellite propagation
subroutine was successful.

D. PROGRAM OVERVIEW

1. Sequential
The sequential version was executed 10 times and the total run times were

averaged. This was done four times and the four average values were averaged resulting
in a sequential time 7', which is used in the calculation of speedup.

The total time for the program to execute did not include the initial time to read the
entire input catalog because this was done one time only at the beginning of each program.
From this point on the total time to execute the program , excluding readtime will be
called endtoend time. The sequential average endtoend time was used
in the calculation of speedup which will be discussed in the Paralle] section below.

2. Parallel

In each program discussed under the Paralle! Algorithm section above, time clocks
were inserted at various locations in order to measure the time to read the entire input
catalog, the endtoend time, the worker's communication time, and the worker's calculation

time.
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The number of satellite input records (consisting of the 22 input valucs) sent
simultancously to each worker was chosen to be either 5, 10, 15, 20, 25, 30, 35, 40, 45,
50, or 55. This was based upon previous work done by Ford and Carvalho (1993).

The number of nodes utilized was 4, 8, or 16. To configure the personal paralicl
virtual machine, a list of names of the Unix-based machines used was listed in a file called
hostfilc. When PVM was started by the command pvnd3 hostfile & , the hostfile was
automaiically read and the machines were ready to act as nodes in a parallel application.

The machine from which the application was started acted as the master and the
slave nodes were spawncd by first specifying the number of nodes desired (num_nodes)
and then exccuting the statement

num = pvm_spawn(SLAVENAME, (char**) 0, 0, "", num_nodcs, tids).
The sclection of 4, 8, or 16 nodes was based upon previous work done by Ostrom (1993)
in the paraliclization of the SGP4 code using the Naval Postgraduate School INTEL
iPSC/2 Hypercube. This is 8 Multipic Instruction stream, Multiple Data stream (MIMD)
multicomputer. It consists of a system resource manager called the host, and eight
individual processors, referred to as nodes.

Data for cach set of choices discussed above was collected for ten iterations of the

entire program and these results were averaged.




a. Analysis

For endtoend time, percent worker communication, speedup, and

efficiency, two comparisons were analyzed to measure the performance

of each algorithm:

(1) For a given algorithm, the performance of four, cight, and sixteen
nodes utilized was compared and

(2) For a given number of nodes, the three algorithm's performance
was compared.

For both cases above the number of satellite input records sent
simultancously was cither 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, or 55.

It is important to note that for all cases, the same input record was utilized;
thus, for all three models the number of calls made to SGP4 and SDP4 was the same.
E. RESULTS

1. Read Time

The time to read the data file (consisting of 8000 records ) varied from
approximately 39 seconds to 1100 seconds. Thus, the readtime was extremely dependent
of the load on the system at the time the data filc was read. This was in contrast to the
results found by Ford and Carvahlo (1993); the number of input records used in their

rescarch was 630 and the read time was approximately § seconds for each execution.
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2. Endtoend Time
The endtoend time is the most important time considered because it is a reflection
of the total performance of each algorithm designed.

a. Method Comparison

For 4md$nodes,lhcopﬁmnlperfmmmwauchiewdbymcm3uk
Mcthod (ABM). For 16 nodes , with the exception of sending 15, 50, or 55 records at a
time the ABM was superior. That is, when sending S, 10, 20, 25, 30, 35, 40, and 45
records simultanoously, the ABM produced the fastest times.

From this point on in this analysis, when a given algorithm is superior the
majority of the cases (as shown above) the term "in general” will be used. For the case
above, one would say "When 16 nodes were utilized, in general, the Answer Back Method
(ABM) was the best." The following graphs illustrate these results:

(1) Using four nodes the Answer Back Method was the fastest:
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Figure 4.1 Four Node Comparison of Models
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(2) Using cight nodes the Answer Back Mcthod was the fastest.
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Figure 4.2 Eight Node Comparison of Models

(3) Using sixteen nodes, in general, the Answer Back Method was fastest.
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Figure 4.3 Sixteen Node Comparison of Models
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b. Node Comparison

For the analysis comparing the performance of various choices of nodes for a given

algorithm the following conclusions can be made:
(1) For the Answer Back Mcthod, a choice of eight nodes was the best;

closely followed by sixteen nodes.
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Figure 4.4 Answer Back Model Node Comparison
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(2) For the Successive Deal 1, a choice of sixteen nodes is superior.
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Figure 4.5 Successive Deal Method I - Node Comparison

(3) For the Successive Deal Method 1, a choice of sixteen nodes is
superior. It is not surprising that sixteen nodes is the best choice for both Successive Deal
Methods because both algorithms are very similar; in general, one can note that the number
of nodes utilized should decrease the endtoend time. The Successive Deal Method I

results can be seen on the next page, Figure 4.6.
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Figure 4.6 Successive Deal Method II - Node Comparison

It ig interesting to note that for the Answer Back Model utilizing cight nodes was
supcrior over sixteen nodes for all cases. This could be attributed to the fact that with
sixteen nodes the communication time (which was naturally greater in the Answer Back
Model) between the master and slaves decreased the advantages of parallelization; whereas,
with eight nodes the advantages of parallclization outweighed the disadvantage of the
communication time between the master and the slaves.

3. Percent Worker Communication

As one can sce from the analysis above, communication time is an important factor
in the performance of a given algorithm.




In "PVM Concurrent Computing System: Evolution, Experiences, and Trends"
Sunderman, Geist, and Mancheck (p. 7, 1993) state that PVM normally operates in a
general purpose networked environment and as a result, raw performance or speedup of a
given application is hard to measure. They go on to state that "in such a scenario, most of
the focus is on communications overhead.”

With communications overhead in mind, the time each worker spent
communicating versus the time spent calculating was cvaluated. Using average values, the
percent of time the worker communicates was calculated as follows:

Average Communication Time

% Worker Communication Time = A Calculation Time

® (100%) .

The goal was to increase the amount of time a worker spent calculating and
decrease the time a worker spent communicating, resulting in a small communication
overhead.

a. Model Comparison
For a given number of nodes, the performance of the three models in terms
of communication overhcad was evaluated and the results are as follows:

(1) Utilizing four nodes for each model produced varied results; in general,
the ABM and the SDII were the best choices. The minimum percent worker
communication time was attained by the SDII Method when sending 35 satellite input
records at a time.
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Figure 4.7 Percent Worker Communication For Each Model Using 4 Nodes

(2) When utilizing cight nodes, both Successive Deal Models were, in
general, superior over the Answer Back Model. The minimum percent worker

communication was attained by SDII when sending 55 satellite input records at a time.
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Figure 4.8 Percent Worker Communication For Each Model Using 8 Nodes
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(3) When utilizing sixteen nodcs, again the Successive Deal Mcthods were
superior over the Answer Back Mcthod. The minimum percent worker communication
was attained by the SDII when sending 35 input records at a time.
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Figure 4.9 Percent Worker Communication For Each Model Using 16 Nodes

The Successive Deal II proved to be the best choice in terms of communication
overthead. The Answer Back Method required the additional communication between the
master and slaves which increased the communication overhead. The Successive Deal I
message sizc was significantly larger, producing slightly inferior results than the Successive
Deal I which continually dealt out small packets of data.

b. Node Comparison
For a given algorithm, the performance of four, cight, and sixteen nodes was

evaluated in terms of communication overhead. The results are as follows:
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(1) For the ABM, the utilization of 4 nodes was superior.
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Figure 4.10 ABM Percent Worker Communication - Node Comparison

(2) For the SDI, in general, the utilization of 4 nodes was the best.
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Figure 4.11 SDI Percent Worker Communication - Node Comparison

60




(3) For SDII the use of four or cight nodes was the best choice.
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Figure 4.12 SDII Percent Worker Communication - Node Comparison

These results are not surprising due to the fact that for a given algorithm each
worker’s calculation time is approximately constant (since they all utilize the same input
record) and the communication time between the master and slaves is reduced when there
are fewer slaves.

4. Speedup

As mentioned carlier, in a general purpose network environment, speedup is hard to
measure with a great deal of confidence.

61




Recall, speedup (S, ) is calculated as follows:

where 7, = Endtoend Time on a Single Processor
T, = Endtoend Time on p Processors

Ideally, the speedup equals "p" the number of processors; however, due to
communication costs, scquential bottlenccks, and computational tagks not necessary on a
single processor the speedup is less than "p”.

With the limitations of speedup results discussed above in mind, the following
results were found to be true.

a. Model Comparison

(1) Utilizing four nodes for each model, the ABM was superior.

§ 10 15 20 25 30 %5 40 4 8 &6
Number of Setefiite Input Records Sent Simultaneously

_ J
Figure 4.13 Speedup Model Comparison When Using Four Nodes
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(2) Utilizing Eight Nodes for cach model, the ABM was superior.
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Figure 4.14 Speedup Model Comparison When Using Eight Nodes

(3) Utilizing sixteen nodes, the ABM, in general, was the best.
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Figure 4.15 Speedup Model Comparison When Using Sixteen Nodes
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b. Node Comparison

(1) For ti.c Answer Back Model using 8 or 16 nodes was superior.
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Figure 4.16 Answer Back Model Speedup

(2) For the Successive Deal I the use of 16 nodes was superior.
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Figure 4.17 Successive Deal I Speedup
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(3) For the Successive Deal I, utilizing 16 nodes was superior.
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Figure 4.18 Successive Deal II Speedup

These speedup results arc directly related to endtoend performance. If one
compares figurcs 4.4-4.6, the endtoend times for cach model, and the figures 4.16-4.18 of
speedups above an inverse relationship is noted.

5. Efficiency
SP

Recall, Efficiency = E=-17

where S, = Speedup for p processors
2 = Number of processors

Thus, the efficiency is a measure of the specdup per processor or how close the
actual speedup is to the theoretical speedup (p). The efficiency was evaluated in terms of a
comparison of models and a comparison of the node performance for a given model. The
results arc as follows:
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a. Model Comparison

(1) Utilizing 4 nodes the Answer Back Model was superior.
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Figure 4.19 Four Node Efficiency Model Comparison

(2) Utilizing 8 nodes, the Answer Back Model was Superior.
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Figure 4.20 Eight Node Efficiency Model Comparison
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(3) For sixteen nodes, there was a large fluctuation for all models; however,

in general the Answer Back Model was the best choice.

b. Node Comparison

(1) For the ABM, the utilization of 4 or 8 nodes was superior.

.

035

ostM:'.:x:
Eo.zs -
&

o2}

0.15 /o\‘_./t/.\v/\,/o

0'15 10 15 20 25 30 35 40 45 50 S5
Number of Satellite iInput Records Sent Simuitareously

4 Nodes
——

8 Nodes
-

16 Nodes

—e

Figure 4.21 Answer Back Model Efficiency

(2) For the SDI using 4 or 8 nodes was the best choice.
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(3) For Successive Deal 11, using 4 or 8 nodes was the best choice.
4 ™
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Figure 4.23 Successive Deal II Efficiency

16 Nodes

It is important to note that with the use of an open network, there are great
flucuations in the amount of time taken to perform a given task. The execution time
dependsmdwnmnberofcmnmilyncmmmdd\epercamgcoftthPUanocawdm
each user. For example, if onc user is running a large application on a given station and
another user is using this same station for PVM applications, the execution time will
be increased.

In conclusion, considering all factors discussed above, the Answer Back Model
was the best algorithm. When using four, eight, or sixteen nodes, the Answer Back Method
produced the best Endtoend times, Speedups, and Efficiencies for all size data packets
distributed at one time.




The fastest time resulted with the ABM using cight nodes and sending five satellitc
input records at a time. The utilization of 8 nodes gives the maximum paralielization
advantage and the minimum communication overhead. The Answer Back Method required
the siaves to notify the master when ready for more data , this reduced the time spent
waiting for data; additionally, the fastest workers were the oncs that processed more data.

In terms of communication overhead, the Successive Deal Il Mcthod was superior
to the Successive Deal I and the ABM. The SDII did not have the added communication
between the Master and Slaves that was inherent in the Answer Back Method.

No conclusions can be made regarding the best size data packet to send because
although sending five input records at a time resulted in the best endtoend time of 73.42
seconds the endtoend time when sending fifty-five records resulted in an endtoend time of
74.85 scconds. Further rescarch would need to be conducted to provide conclusive results

on the optimal size data packet to be distributed.
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V. CONCLUSIONS

The goal of this thesis is to illustratc how a network of computer workstations is
used as a paralle] computer to solve a military requirement of tracking 8000 satellites
daily.

The Air Force Space Command (AFSPACECOM) satellite computer code ran
approximately 2.6 times faster by the paralielization of the code implemented on the
Parallel Virtual Machine (PVM) using 8 workstations. PVM is a small softiware package
(~ Mbyte of C source codc) that allows a network of computers to appear as a
distributed-memory parallel computer.

Many scientists do not use their workstations all the time and when applications
are to be run may need more power than a single workstation can provide. The cost of
allocating large computing resources to cach user is rising daily; thus, the use of PVM or
a similar product will be standard in the future.

For military applications, this work illustrates how to use PVM to track satellites
using ordinary workstations. A Naval PVM application would be to use a system of
workstations located at various enclaves in the ship to track and destroy incoming threats.
If the ship took a direct hit in one of its enclaves, the crew would be able to choose
unaffected workstations to continue computing power; thus, reducing the vulnerability of
the ship.

The AFSPACECOM's Simplificd General Perturbation Model Four (SGP4) has

been the operational theory since 1976. The SGP4 model uses six classical orbital
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clements, a drag factor, and an epoch time to predict a satellite's position and velocity at
a future time.

The SGP4 and it's extension, SDP4, are both analytical models. Although the
solutions are not as accurate as numerical techniques, they are computationally less
expensive. A detailed discussion of the SGP4's mathematical theory can be found in
Chapter II.

Currently, D.A. Daniclson and B. Neta at the Naval Postgraduate School are
documenting and testing a semi-analytical satellitc motion model developed by Draper
documentation by Danielson, Early, and Neta (1993) and numerical experiments
comparing the semi-analytics to numerical and analytical models by Dyer (1993).

Three algorithms were developed to parallelize the AFSPACECOM code and the
performance of each algorithm was tested. All three algorithms use a Master and Slave
approach with a separate collector to collect the results and send them back to the
Master. The Master distributes the data to the Slaves. The Slaves perform all the
calculations necessary 1o produce the position and velocity vectors for each satellite. The
algorithms differed in the manner in which the data is distributed. Each algorithm is
tested using four, eight, and sixteen workstations.

The algorithm that required the Slaves to notify the Master when ready for more
data resulted in the best times, this method is called the Answer Back Method or ABM.

In the ABM, there was less time spent by the Slaves waiting for more data to process
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which resulted in the fastest workers processing the most data. When using four, eight, or
sixteen workstations, the ABM produced the best total times, speedups, and efficiencies.

One area of further rescarch would include the use of more than sixteen
workstations and an algorithm designed to reduce the bottleneck created by the collecting
node. Pethaps, the use of two or more collectors would be advantageous. Additionally,
further research should be conducted to provide conclusive results on the optimal size
data packet to be distributed.

Some of the curves exhibit large fluctuations, this is probably due to changes in
the number of users on the system at the time the data was collected. Further rescarch
should be conducted to test if the results are reproducible to some extent.

The effect of writing the results to an output file was not considered in this
rescarch. Any research conducted in the future should examine the results produced when
including the time required to write to an output file.

In conclusion, the result of this thesis confirms that PVM can be used to track
orbiting-carth satellites. The use of workstations for paralle! processing uses untapped
power and decreases the amount of computational time required. As the number of
objects to be tracked and the computational power required increases this work will

become increasingly more important.




APPENDIX A : SOURCE CODE

/i*fi*******ﬁ*****i*i**i***i***ti***"tt*t*t*i**tti**t*t***t*t*****tﬁ*ttt

* sat_master_ab.c LAST UPDATE: Oct S5 1993 *
* LT S.K. Brewer »
* This is the master program for the Answer Back Method. It uses PVM *
* to simulate a 2D torus of processors;n+l slaves are spawned, of *
* which n are working nodes and 1 is the collecting node. *
* Satellite data is issued to the workers in *Answer Back" fashion, bl
* gsending new data to a working node only when the node is ready. *
* Timing data, collecting for statistical purposes only, are placed in *
* the file "timing.ans"” which will be placed in the directory from *
* *
* /

which this master program is invoked.
I X2 R A XXX XXXXX22RR2 2SR XXX AR 222 SRR R XSS R X2 agd i a2 222222 XX

#include <«stdio.h> /* INCLUDE STANDARD I/0 FUNCTIONS */
#include "pvm3.h* /* INCLUDE PVM FUNCTIONS */
#include <sys/time.h>

#include <time.h>

#include <math.h>

#include <sys/types.h>

#define SLAVENAME *at.yrun"®

int main(argc, argv) /* GET FILE NAME FROM COMMAND LINE */
int argc;

char *argvl(]:

{

int num_nodes=3; /* NUMBER OF SLAVE NODES */

int num_satdata=15; /* input data records distributed */

int num_elements=22; /* NUMBER OF elements in each data record */
double sat[10000)[22]); /* ARRAY OF satellite input records */

int its,nod,size,delta=5;

int num, mytid, i=0, j, k, tids[32], msgtag, reading=1;

int numsat=0, collector, leftover, worker, sets, work_nodes,done=0;
struct timeval ts(4]; /* Number of time stamps */

int who;

float endtoend, tcomm, average=0.0,avcoll=0.0,avcomm=0.0, avcalc=0.0;
float cmtime, commtime, cctime, calctime, readtime, c¢_comm,avpcm=0.0;
float avpcl=0.0,aa=0.0;

FILE *infile, *timing;

int msgtag99=99;

gettimeofday (&ts[0], (struct timeval *)0);/* BEGIN READING DATA FILE */

/* OPEN DATA FILE */

if ((infile = fopen(argv(l], "r")) == NULL)
{ printf(*"infile = %s did not open\n", argv(l)]);
exit(1l);

)
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/* READ ENTIRE DATA FILE AT ONCE */

while(reading != EOF)

{ if ((reading = fscanf(infile, "%1f",
for (j=1; j<num_elements; ++3)

&sat {numsat] [0])) != EOF)

fscanf(infile, "%1f*, &sat[numsat](3j]):

numsat=numsat+l;
)
fclose(infile);
numsat=numsat-1;
gettimeofday(&ts[1l], (struct timeval *)0);
/* SET UP FILE FOR TIMING STATISTICS */
timing = fopen(®*timing.ans", "a");

readtime = (ts[l]).tv_sec-ts[0].tv_sec)*1000000+ts[1l]).tv_usec-ts[0].tv_usec;
$1d microseconds\n",

fprintf(timing, "Time to read data file =
for(size=0; size<55; size +=delta)
{
num_satdata = size + 5;
for (nod=0; nod<3; ++nod)
{
if(nod == 0)
num_nodes = 3;
else
if(nod == 1)
num_nodes = 7;
else num_nodes = 15;
fprintf (timing, *sats,nodes, endtoend
worker_comm worker_calc\n");
fprintf(timing, "%d

for(its=0; its<l; ++its)
{

/*

/* COUNT NUMBER OF SATELLITES IN DATA FILE */

END READING DATA FILE */

collector_comm

$d\n", num_satdata, num_nodes) ;

gettimeofday (&ts{2), (struct timeval *)0);/* BEGIN END TO END TIME*/

/*#**x#*xx+x ENROLL IN PVM

**i****ﬁ***/
mytid = pvim_mytid();
/* START UP SLAVE TASKS */

num=pvm_spawn (SLAVENAME, (char**)0,
collector=tids{0];

*, num_nodes, tids);

/* SEND SLAVES THIER INDICES INTO THE TID ARRAY */

msgtag=1;

for (i=0; i<num_nodes; ++1i)

( pvin_initsend(PvmDataRaw) ;
pvm_pkint (&i,1,1);

if (i==0)
pvm_pkint (&numsat, 1, 1):
else

pvm_pkint (&collector, 1, 1);/* TELL WORKERS COLLECTOR'S ADDRESS*/

pvm_send( tids{i], msgtag);

74

/* TELL COLLECTOR NUMBER OF SATS */
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/* SEND SETS OF SATELLITE DATA TO WORKERS, WAITING FOR ANSWER BACK */
msgtag=2;
k=0;
work_nodes=num_nodes-1;
sets=numsat/num_satdata;
leftover=numsat-sets*num_satdata;
i=0;
for(j=1;j<num_nodes; ++3) /* DEAL ONE SET OF SATELLITES TC EACH WORKER */
{ pvr_initsend (PvmDataRaw) ;
pvm_pkint (&num_satdata,1,1);
for (k=0; k<num_satdata; ++k)
{ pvm_pkdouble(sat(i], num_elements,1);
i=i+l;
}
pvin_send(tids{j], msgtag):
sets=sets-1;
}
while(sets>0) /* DEAL REMAINING SETS TO WCRKERS AS THE NODES BECOME FREE */
{ pvm_initsend (PvmDataRaw) ;
pvr_pkint (&num_satdata,1,1);
for (k=0; k<num_satdata; ++k)
{ pvr_pkdouble(sat[1i]), num_elements,1);
i=i+l;
}
sets=sets-1;
pvm_recv(-1, msgtag99);
pvm_upkint (&who, 1,1} ;
pvmn_send(tids[who],msgtag);
}
if (leftover>0) /* SEND LEFTOVERS TO WHOEVER IS READY NEXT */
{ pvm_initsend(PvmDataRaw) ;
pvmn_pkint (&leftover,1,1);
for (k=0; k<leftover; ++k)
( pvin_pkdouble(sat[i], num_elements,1):
i=i+l;
)
pvm_recv(-1,msgtag%9);
pvm_upkint (&who, 1,1) ;
pvm_send(tids [who],msgtag) ;
}

pvm_initsend (PvmDataRaw) ;
pvm_pkint (&done, 1, 1); /*TELL WORKERS NO MORE DATA IS COMING*/
pvm_mcast (tids, num_nodes, msgtag);

msgtag=5;/* RECEIVE PROGRAM COMPLETE SIGNAL FROM COLLECTOR */
pvm_recv(-1,msgtag);

/* COMPLETE END TO END TIME */

gettimeofday (&ts{3], (struct timeval *)0);
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/* GATHER TIMING STATISTICS FROM SLAVES */
msgtag=4;
for (i=0; i<num_nodes; ++1i)
{ pvn_recv(-1,msgtag);
pvm_upkint (&who, 1,1);
if (who == 0) /* TIMES FROM COLLECTOR */

{
pvm_upklong (&c_comm, 1,1) ;
)
else
/* TIMES FROM WORKERS */
{

pvm_upklong(&cctime,1,1);
calctime=calctime+cctime;
pvim_upklong (&cmtime,1,1);
commt ime=commt ime+cmt ime;

)
}
pvm_exit () ;
/* COMPUTE OVERALL TIMING STATISTICS */
ndtoend=(float) (ts[3).tv_sec-ts[2]).tv_sec)*1000000+
(float)ts{3].tv_usec-(float)ts[2).tv_usec;
/*convert to seconds*/
c_comm=c_comm/1.0E6;
endtoend=endtoend/1.0E6;
commtime=commtime/1.0E6;
calctime=calctime/1.0E6;
/* TOTAL TIME*/
average = average + endtoend;

avcoll = avcoll + c_comm; /*collector communication time*/
avcomm = avcomm + commtime; /*worker communication time*/
avcalc = avcalc + calctime; /*worker calculation time*/
fprintf (timing, * $6.2f $6.2€

$6.2f $6.2f\n", endtoend, c_comm, commtime, calctime) ;

average = average/its;

avcoll avcoll/its;

avcomm avcomm/its;

avcalc = avcalc/its;

avpcm=avcomm/ (num_nodes-1) ;

avpcl=avcalc/ (num_nodes-1);

aa={avpcm/avpcl) *100;

/* print results to output file - not shown in this code */

fclose(timing);
printf (*ENTIRE SEQUENCE COMPLETE");
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/ﬁ*t**i*iiﬁ******'ﬁ**tt**#t**t***i**ttitt****fi***t***t**t*t****
*

*
* sat_slave_ab.c LAST UPDATE: 05 OCT 1993 *
* Susan Brewer *
* This is the slave program for the Answer Back Method. *
* It uses PVM to simulate a 2D torus of processors. *
* fThe slave with index 0 will be the collecting node. *
* This program "answers back" for more data. *
* The Fortran sub-routine *"sgpdm®"is called to perform the *
* calculations for orbit prediction *
[ZZXZZSZEIEZIEEEIZIRELAEEARS S SEES SRS SRR R R RS 2R R R iRl Rl SR

/

#include "pvm3.h* /* INCLUDE PVM FUNCTIONS */
#include <«stdio.h>

#include <sys/time.h>

#include <time.h>

#include <math.h>

#include <sys/types.h>

main{)

(

double results[7*100+1); /* ARRAY OF RESULTS */

int nunm_elements=22; /* FIELDS IN INPUT SATELLITE RECORD */
double sat_datal[22]; /* ONE SATELLITE INPUT RECORD */
int max=8000, sats=1;

int sat_no;

int i,j, k, t, r_length; /* COUNTERS *x/
int tids([32]; /* ARRAY OF PROCESSOR IDS */
int mytid, numnode; /* MY PROCESSOR ID */
int me, collector; /* MY INDEX INTO THE TIDS ARRAY */
int master,msgtag, msgtag2=2, msgtag3=3, msgtag9%=99;

struct timeval ts(4];

int res_sets=0;

float s=z0.0, u=0.0, totaltime, calc, comm;

extern sgpdm_ (); /* EXTERNAL SUB-ROUTINE FOR ORBIT PREDICTION */

mytid = pvm_mytid(); /* ENROLL IN PVM */
master=pvm_parent () ;

/* RECEIVE MY INDEX AND COLLECTOR'S TID FROM MASTER */
gettimeofday (&ts([0], (struct timeval *)0);

msgtag = 1;

pvm_recv( -1, msgtag );

pvm_upkint (&me, 1, 1); /* GET MY INDEX IN THE ARRAY OF TIDs */
pvm_upkint (&collector, 1, 1): /* GET THE COLLECTING NODE'S TID*/
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if(me == 0) /* IF I AM THE COLLECTING NODE: */
{
for(i=0; i< max; ++1i)
{
pvm_recv( ~1, msgtag3);
pvm_upkint (&sat_no, 1, 1);/* RECEIVE RESULT SETS */
pvm_upkint (&xr_length, 1, 1);
pvm_upkdouble (results, r_length, 1);
}
msgtag=5; /* TELL MASTER ALL RESULTS HAVE BEEN received */
pv_initsend (PvmDataRaw) ;
pvim_send (master, msgtag);
}
else /* If I AM A WORKING NODE: */
{
while(sats>0) /* REPEAT UNTIL MASTER SENDS DONE SIGNAL */
{ pvii_recv(-1l, msgtagl);
pvm_upkint (&sats, 1, 1);
for (i=0; i<sats; ++1i)
{ pvmm_upkdouble (sat_data, num_elements ,1);
sat_no=(int)sat_data([l];
gettimeofday (&ts[2], (struct timeval *)0);
sgpdm_ (sat_data, results); /* CALL SUB-ROUTINE*/
gettimeofday (&ts[3]), (struct timeval *)0);
s=s+ts[3]).tv_sec-ts(2].tv_sec;
u=u+ts([3)].tv_usec-ts[2]).tv_usec;
r_length=7*(int)results{0}+1; /* NUMBER OF RESULTS RECORDS */
pvii_initsend (PvmDataRaw) ;

pvm_pkint{ &sat_no, 1, 1 ); /* SATELLITE NUMBER */
p-mopkint{ &r_length, 1, 1);

pvim_pkdouble( results, r_length, 1 ); /*PACK */
pvin_send(collector, msgtag3l); /* SEND */

pvm_initsend(PvmbDataRaw); /*TELL MASTER I'M READY FOR MORE DATA */
pvm_pkint (&me, 1,1);
pvin_send (master, msgtag99);
)
}/* TIMING STATISTICS TO BE SENT TO MASTER */
gettimeofday (&ts[1l], (struct timeval *)0);
totaltime=(float) (ts[l]).tv_sec-ts[0].tv_sec)*1000000+
(float)ts[1l].tv_usec-(float)ts[0].tv_usec;
calc = s*1000000 + u;
comm = totaltime - calc;
msgtag=4;
pvm_initsend(PvmDataRaw) ;
pv_pkint (&me, 1,1);
if(me == 0)
{
pvin_pklong(&totaltime,1,1);
)
else
(
pvm_pklong(&calc,1,1) ;pvim_pklong (&comm, 1,1);
)
pvim_send(master,msgtag) ;
pvm_exit () ;
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/*ii*i*i*ﬁ'**i****iﬁ*******i*iit.i*t'ﬁi***'ttii***t’tt*tti#'tittt*t
*

* sgat_master_SDIl.c LAST UPDATE: Oct 12 1993

* LT S.K. BREWER

* This is the master program for the Successive Deal Method I.

* It uses PVM to simulate a 2D torus of processors;n+l slaves

* are spawned, of which n are working nodes and 1 is the

* collecting node. Satellite data is issued to the workers by

* first dealing one data package (num_satdata) to each worker,
*then deal 1/(2*working nodes)times the number of data sets

* left (num_sets) .Followed by a final deal of equal packets to
*each worker. Any leftover records are sent last. Timing data,
*collectinag for statistical purposes only, are placed in the

* file *..ming" which will be placed in the directory from which
* this master program is invoked. *
"ﬁf*t"*i*tti'h**ti*tt****ﬁi***itt*tt***ttQ*tttt*t**********t***t*/
#include <stdio.h> /* INCLUDE STANDARD I/0 FUNCTIONS */
#include *"pvm3.h" /* INCLUDE PVM FUNCTIONS */
#include <sys/time.h>

#include <time.h>

#include <math.h>

#include <sys/types.h>

* 2 R % % B % * X % % » »

#define SLAVENAME "t.run"
int main{argc, argv) /* GET FILE NAME FROM COMMAND LINE */
int argc;
char *argv|];
{
int num_nodes; /* NUMBER OF SLAVE NODES */
int num_satdata; /* NUMBER OF input data records*/
int num_elements=22; /* NUMBER OF elements */
double sat[10000](22]); /* ARRAY */
int its,nod,size,delta=5;
int num, mytid, i=0, j=0, k=0, s=0, tids[32), msgtag:;
int numsat=0, collector, reading=1l;
int leftover=0,setsleft=0,worker=0, sets=0,num_sets=0;
int work_nodes=0,done=0;
struct timeval ts(4]; /* Time Stamps required */
int who;
float endtoend=0.0, tcomm=0.0,average=0.0,avcoll=0.0;
float avcomm=0.0,avcalc=0.0, c_comm, avpcm=0.0,avpcl=0.0,aa=0.0;
float cmtime, commtime, cctime, calctime, readtime;
FILE *infile, *timing;

/* BEGIN READING DATA FILE */
gettimeofday (&ts[0], (struct timeval *)0);
/* OPEN DATA FILE */

if ((infile = fopen(argv(l]), *"r*)) == NULL)
{ printf(*infile = %s did nct open\n", argv[l}]);
exit (1);

)
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/* READ ENTIRE DATA FILE AT ONCE */
while(reading != EOF)
{if ((reading = fscanf(infile, °*%$1f", &sat([numsat]([0])) != EOF)
for (j=1; j<num_elements; ++j)
fscanf(infile, *"%1f", &sat(numsat]([3j}):;
numsat=numsat+1l; /* NUMBER OF SATELLITES IN DATA FILE */
}
fclose(infile);
numsat=numsat-1;
/* END READING DATA FILE */
gettimeofday (&ts[1l], (struct timeval *)0);
/* SET UP FILE FOR TIMING STATISTICS */
timing = fopen(®"timing®, "a");
readtime = (ts[l).tv_sec-ts[0]).tv_sec)*1000000+
ts[l].tv_usec-ts([0].tv_usec;
fprintf(timing, "Time to read data file = %1d microseconds\n",readtime);
for(size=0; size<55; size +=delta)
{
num_satdata = size + 5;
for (nod=0; nod<3; ++nod)
{
if (nod == 0)
num_nodes =
else
if(nod == 1)
num_nodes = 7;
else num_nodes = 15;
for(its=0; its<10; ++its)
{
leftover=90;
setsleft=0;
sets=0;
num_sets=0;
gettimeofday(&ts[2), (struct timeval *)0);/* BEGIN END TO END TIME*/

3;

/itit*tt*** ENROLL IN pVM *'**tt*t*tt/
mytid = pvm_mytid();:

/* START UP SLAVE TASKS */

num=pvm_spawn (SLAVENAME, (char**)0, 0, **, num_nodes, tids);

collector=tids|[0];

/* SEND SLAVES THIER INDICES INTO THE TID ARRAY */
msgtag=1;

for (i1i=0; i<num_nodes; ++1i)

{ pvm_initsend (PvmDataRaw) ;

pvm_pkint (&i,1,1);

if (i==0)
pvm_pkint (&numsat, 1, 1);
else

pvim_pkint (&collector, 1, 1);
pvm_send( tids[i]}, msgtag);
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/* SEND SETS OF SATELLITE DATA TO WORKERS */
msgtag=2;
k=0;
work_nodes=num_nodes-1;
sets=numsat/num_satdata;
leftover=numsat-sets*num_satdata;
i=0;
for(j=1;j<num_nodes; ++j) /* DEAL SET OF SATS TO EACH WORKER */
{ pvm_initsend (PvmDataRaw) ;

pvm_pkint (&num_satdata,l1,1);

for (k=0; k<num_satdata; ++k)

{ pvm_pkdouble(sat(i], num_elements,1l);

izi+l;
)

pvm_send(tids[j], msgtag);

sets=sets-work_nodes;
num_sets=sets/ (2*work_nodes) ;

for(j=1; j<num_nodes; ++3j) /* Deal 1/2p records */
{
for(s=0; s<num_sets; ++s)
{
pvin_initsend{PvmDataRaw) ;
pvm_pkint (&num_satdata,1,1);
for (k=0; k<num_satdata; ++k)
{
pvm_pkdouble(sat[i], num_elements,l);
i=i+l;
}
pvm_send(tids[j],msgtag);

)

sets=sets- (num_sets*work_nodes) ;
num_sets=sets/work_nodes;
setsleft=sets~-(num_sets*work_nodes);
/* Deal remaining records in equal packets */
for(j=1; j<num_nodes; ++3j)
{
for(s=0; s<num_sets; ++s)
{
pvin_initsend (PvmDataRaw) ;
pvn_pkint (&num_satdata,1,1);
for (k=0; k<num_satdata; ++k)
{
pvin_pkdouble(sat[i], num_elements,1);
izi+l;
)
pvm_send(tids[j]),msgtag);
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if (setsleft>0) /*send leftover sets*/
{
for(s=0; s<setsleft; ++s)
{
pvm_initsend{PvmDataRaw) ;
pvm_pkint (&num_satdata,l,1);
for (k=0; k<num_satdata; ++k)

{
pvm_pkdouble(sat([i], num_elements,1);
141
)
pvmm_send(tids[1],msgtag);
)

)
if(leftover>0) /* send leftover records*/
{

pvm_initsend (PvmDataRaw) ;
pvm_pkint (&leftover,1,1);
for (j=0; j<leftover; ++3j)
{
pvin_pkdouble(sat[i], num_elements,l);
i=i+1;
)
pvin_send(tids[1],msgtag);
)
pvm_initsend (PvmDataRaw) ;
pvm_pkint (&done, 1, 1); /* TELL WORKERS NO MORE DATA IS COMING*/
pvm_mcast (tids, num_nodes, msgtag);

msgtag=5;/* RECEIVE PROGRAM COMPLETE SIGNAL FROM COLLECTOR */
pvm_recv(-1,msgtag);

gettimeofday (&ts[3], (struct timeval *)0); /* END TO END TIME*/

/* GATHER TIMING STATISTICS FROM SLAVES */
msgtag=4;
for (i=0; i<num_nodes; ++1i)
{ pvm_recv(-1,msgtag):
pvm_upkint (&who,1,1);
if (who == 0) /* TIMES FROM COLLECTOR */
{
pvm_upklong (&c_comm,1,1);/* TIME COLLECTOR COMM */
)
else /* TIMES FROM WORKERS
{
pvm_upklong(&cctime,1,1);
calctime=calctime+cctime;
pvm_upklong (&cmtime,1,1);
commt ime=commt ime+cmt ime;
)
)
pvm_exit () ;

*/




/* COMPUTE OVERALL TIMING STATISTICS */
/*COMM TIME*/

endtoend=(float) (ts[3]).tv_sec-ts[2]).tv_sec)*1000000+
(float)ts[3]).tv_usec-(float)ts[2]).tv_usec;

/*convert to seconds*/
c_comm=c_comm/1.0E6;
endtoend=endtoend/l1.0E6;
commt ime=commtime/1.0E6;
calctime=calctime/1.0E6;
/* TOTAL TIME*/
average = average + endtoend;
avcoll = avcell + c_comm; /*collector communication time*/
avcomm = avcomm + commtime; /*worker communication time*/
avcalc = avcalc + calctime; /*worker calculation time*/
endtoend = 0.0;calctime = 0.0;commtime = 0.0;c_comm = 0.0;
)
average = average/its;
avcoll avcoll/its;
avcomm avcomm/its;
avcalc = avcalc/its;
avpcm=avcomm/ (num_nodes-1) ;
avpcl=avcalc/ (num_nodes-1);
aa=(avpcm/avpcl) *100;
/* Print results to output file - not shown in this code */
average=0.0;
avcoll=0.0;
avco.m=0,0;
avcalc=0.0;
avi ~-0.0;
avpcl=0.0;
aa=0.0;

)
fclose(timing);
printf ("ENTIRE SEQUENCE COMPLETE - results have been appended to timing*);
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/*iittti**‘I‘***tti***#t***fi**'***'t*t***tttiti***i‘tt*t*i*tt*

* *
* gat_slave_SDI.c LAST UPDATE: 12 OCT 1993 *
* LT S.K. BREWER *
* fThis is the slave program for Successive Deal I. *
* It uses PVM to simulate a 2D torus of processors. *
* The slave with index 0 will be the collecting node. *
* The Fortran sub-routine ®sgp4m® is called to perform *
* the calculations for orbit prediction. *
'**'*'tttt*ﬁ**tt*ti*i*tﬁ't'*i*i'*****t*t*****'ﬁit*****t*t***/
#include "pvm3.h* /* INCLUDE PVM FUNCTIONS */
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>
main ()
{
double results([7*100+1); /* ARRAY OF RESULTS */
int num_elements=22; /* NUMBER OF FIELDS */
double sat_data(22); /* ONE SATELLITE INPUT RECORD*/
int sats=1,maxsats;
int sat_no;
int i,3, k, t, r_length; /* COUNTERS */
int tids({32]); /* ARRAY OF PROTESSOR IDS */
int mytid, numnode; /* MY PROCESSOR 1D */
int me, collector; /* MY INDEX INTO THE TIDS ARRAY */
int master,msgtag, msgtag2=2, msgtag3=3;
struct timeval ts{4]:
float s=0.0, u=0.0, totaltime, calc, comm;
extern sgpdm_ (); /* FERNAL SUB-ROUTINE */
mytid = pvm_mytid(); /* ENROLL IN PVM */
master=pvm_parent () ;
/* RECEIVE MY INDEX AND COLLECTOR’S TID FROM MASTER */
gettimeofday(&ts[0], (struct timeval *)0);
msgtag = 1;

pvm_recv( -1, msgtag )
pvm_upkint (&me, 1, 1); /*GET MY INDEX IN THE ARRAY OF TIDs*/
pvm_upkint (&collector, 1, 1);
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if (me == 0) /* IF I AM THE COLLECTING NODE */
{
maxsats=collector;
for(i=0; i<maxsats; ++i)
{
pvm_recv{ -1, msgtag3);
pvm_upkint (&sat_no, 1, 1);/* RECEIVE RESULT Sets */
pvm_upkint (&r_length, 1, 1);
pvm_upkdouble (results, r_length, 1);
)
msgtag=5; /* TELL MASTER ALL RESULTS HAVE BEEN received */
pvm_initsend(PvmDataRaw) ;
pvm_send (master, msgtag);
)
else /* If I AM A WORKING NODE */
{
while(sats>0) /* REPEAT UNTIL MASTER SENDS DONE SIGNAL */
{pvm_recv(-1, msgtag2);
pvm_upkint (&sats, 1, 1);
for (i=0; i<sats; ++1i)
{ pvm_upkdouble (sat_data, num_elements ,1);
sat_no=(int)sat_data(l};
gettimeofday (&ts[2], (struct timeval *)0);
sgpdm_ (sat_data, results); /* CALL SUB-ROUTINE */
gettimeofday (&ts([3], (struct timeval *)0);
s=s+ts[3]).tv_sec-ts[2].tv_sec;
u=u+ts([3].tv_usec-ts[2].tv_usec;
r_length=7*(int)results([0]}+1;
pvin_initsend (PvmDataRaw) ;

pvie_pkint{( &sat_no, 1, 1 ); /* SATELLITE NUMBER*/
pvm_pkint ( &r_length, 1, 1);

pvm_pkdouble( results, r_length, 1 ); /*PACK */
pvi_send(collector, msgtag3); /* SEND */

}
)
}/* TIMING STATISTICS TO BE SENT TO MASTER */
gettimeofday (&ts[1l], (struct timeval *)0);
totaltime=(float) (ts[l).tv_sec-ts[0].tv_sec)*1000000+
(float)ts[1l]).tv_usec-(float)ts[0].tv_usec;

calc = s*1000000 + u;
comm = totaltime - calc;
msgtag=4;

pvm_initsend(PvmDataRaw} ;
pvm_pkint (&me, 1,1);
if (me == 0)
{

pvm_pklong (&totaltime,1,1);
}
else
(

pvm_p:-long(&calc,1,1); pvm_pklong(&comm,1,1);
)

pvim_send (master,msgtag) ;pvm_exit () ;

}
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/'Q**'Qifiﬁ'tt'it**t**t**tii'*’**ttt'tt***tt» (A A8 2 & R
» *

* gat_master_SDII.c LAST UPDATE: Oct 13 1993 *
* LT S.K. BREWER *
* This is the master program for the Successive *
* Deal II. It uses PVM to simulate a 2D torus of *
* processors; n+l slaves are spawned, of which n *
* are working nodes and 1 is the collecting node. *
* Satellite data is issued to the workers by *
* constantly dealing out equal size data packs. *
* Timing data, collecting for statistical purposes*
* are placed in the file *timrr" which will be *
* placed in the directory from which this master *
*
*

program is invoked. *
t**i'ﬁtt'k*'t*i*tttt't'i*t**tti**t*t*'Qt***t*titt*/

#include <stdio.h> /* INCLUDE STANDARD I/O FUNCTIONS */
#include °"pvm3.h* /* INCLUDE PVM FUNCTIONS */
#include <sys/time.h>

#include <time.h>

#include <math.h> |
#include <sys/types.h>

#define SLAVENAME *t.run®
int main(argc, argv) /* GET FILE NAME FROM COMMAND LINE */

int argc;
char *argv(];
{
int num_nodes; /* NUMBER OF SLAVE NODES */
int num_satdata; /* # input records dealt */
int num_elements=22;
double sat[10000])(221]1; /* ARRAY */
int its,nod,size,delta=5;
int num, mytid, i=0, j, k, tids([32], msgtag;
int numsat=0, collector, leftover, worker, sets;
int work_nodes, done=0,reading=1;
struct timeval ts{4]; /* Number of time stamps * /
int who;
float endtoend, tcomm, average=0.0,avcoll=0.0;
float avcomm=0.0,a -alc=0.0, readtime, c_comm,avpcm=0.0;
float cmtime, commtime, cctime, calctime,avpcl=0.0,aa=0.0;
FILE *infile, *timing;

/* BEGIN READING DATA FILE */
gettimeofday (&ts[0], (struct timeval *)0);
/* OPEN DATA FILE */

if ((infile = fopen(argv(1l], ®"xr")) == NULL)

{ printf(®"infile = %s did not open\n®", argv(l]);
exit(1);

}
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/* READ ENTIRE DATA FILE AT ONCE */
while(reading ! EOF)
{ if ((reading = fscanf(infile, "%1f*, &sat{numsat](0]))) {= EOF)
for (j=1; j<num_elements; ++j)
fscanf(infile, "%1f*, &sat([numsat]([j]);
numsat=numsat+1l;/* COUNT NUMBER OF SATELLITES IN DATA FILE */

fclose(infile);
numsat=numsat-1;
/* END READING DATA FILE */
gettimeofday (&ts[1l], (struct timeval *)0);
/* SET UP FILE FOR TIMING STATISTICS */
timing = fopen("timrr*", "a");
readtime = (ts[l].tv_sec-ts{0].tv_sec)*1000000+
ts[l).tv_usec-ts[0].tv_usec;

for(size=0; size<55; size +=delta)

{

num_satdata = size + 5;

for(nod=0; nod<3; ++nod)
{
if(nod == 0)
num_nodes = 3;
else
if{nod == 1)
num_nodes = 7;
else num_nodes = 15;
for(its=0; its<10; ++its)
{ /* BEGIN END TO END TIME */
gettimeofday (&ts[2], (struct timeval *)0);
/ﬁﬁ'ﬁ#tt'tﬁ ENROLL IN PW '**'**ﬁtfﬁ*/

mytid = pvm_mytid();

/* START UP SLAVE TASKS */
num=pvm_spawn (SLAVENAME, (char**)0, 0, *", num_nodes, tids);
collector=tids(0];

/* SEND SLAVES THIER INDICES INTO THE TID ARRAY */
msgtag=1;
for (i=0; i<num_nodes; ++1i)
{ pvim_initsend(PvmDataRaw) ;
pvn_pkint (&i,1,1);

if (i==0)
pvm_pkint (&numsat, 1, 1);
else

pvre_pkint (&collector, 1, 1);
pvm_send( tids(i], msgtag);
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/* SEND SETS OF SATELLITE DATA TO WORKERS */
msgtag=2;

k=0;

work_nodes=num_nodes-1;
sets=numsat/num_satdata;
leftover=numsat-sets*num_satdata;

for (i=0; i<sets; ++i)
{ worker = i-(i/work_nodes) *work_nodes+1;

pvm_initsend (PvmDataRaw) ;

pvm_pkint (&num_satdata, 1, 1);

for(j3=0; j<num_satdata; ++3j)

{ pvm_pkdouble(sat{k], num_elements, 1);
k=k+1;

}

pvin_send( tids[worker], msgtag):;
)
if (leftover>0) /* SEND LEFTOVERS */
{ pvm_initsend (PvmDataRaw) ;
pvm_pkint (&leftover, 1, 1);
for(j=0; j<leftover; ++3)
( pvin_pkdouble (sat [k], num_elements, 1);
k=k+ 1 M
}
pvm_send(tids[work_nodes], msgtag);
)
pvin_initsend(PvmDataRaw) ;
/* TELL WORKERS NO MORE DATA IS COMING */
pvin_pkint (&done, 1, 1);
for(j=1; j< num_nodes; ++3)
{
pvm_send(tids[j), msgtag);
}
msgtag=5;/* RECEIVE PROGRAM COMPLETE SIGNAL FROM COLLECTOR*/
pvm_recv(-1,msgtag);
/* COMPLETE END TO END TIME */
gettimeofday (&ts(3], (struct timeval *)0);
/* GATHER TIMING STATISTICS FROM SLAVES */
msgtag=4;
for (i=0; i<num_nodes; ++1i)
{ pvm_recv(-1,msgtag);
pvm_upkint (&who,1,1);
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if (who == 0) /* TIMES FROM COLLECTOR */

{

pvim_upklong (&c_comm,1,1); /* TIME COLLECTOR SPENT COMMUNICATING */

)

else

/* TIMES FROM WORKERS */

{ pvm_upklong(&cctime,1,1); /* TIME SPENT CALCULATING RESULTS */
calctime=calctime+cctime;
pvm_upklong (&cmtime,1,1); /* TIME SPENT COMMUNICATING OR WAITING */
commt ime=commt ime+cmt ime;

)

)

pvim_exit () ;

/* COMPUTE OVERALL TIMING STATISTICS */

/*COMM TIME*/
endtoend=(float) (ts[3].tv_sec-ts[2].tv_sec)*1000000+

(float)ts([3).tv_usec-(float)ts[2].tv_usec;

/*convert to seconds*/

c_comm=c_comm/1.0E6;

endtoend=endtoend/1.0E6;

commt ime=zcommtime/1.0E6;

calctime=calctime/1.0E6;

/* TOTAL TIME*/

average = average + endtoend;

avcoll = avcoll + c_comm; /*collector communication time*/

avcomm = avcomm + commtime; /*worker communication time*/

avcalc = avcalc + calctime; /*worker calculation time*/
endtoend = 0.0;calctime = 0.0;commtime = 0.0;c_comm = 0.0;

average = average/its;

avcoll = avcoll/its;
avcomm = avcomm/its;
avcalc = avcalc/its;

avpcm=avcomm/ (num_nodes-1);
avpcl=avcalc/ (num_nodes-1});
aa=(avpcm/avpcl)*100;

/* Print statistics to output file - not shown in code */
average=0.0;

avcoll=0.0;

avcomm=0.0;

avcalec=0.0;

avpcm=0.0;

avpcl=0.0;

aa=0.0;

fclose(timing);
printf (*"ENTIRE SEQUENCE COMPLETE *);
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/*********************i******************ti*i************ﬁ**

* L
* sat_slave_SDII.c LAST UPDATE: 13 OCT 1993 *
* LT S.K. BREWER *
* This is the slave program for Successive Deal I. *
* It uses PVM to simulate a 2D torus of processors. *
* The slave with index 0 will be the collecting node. *
* The Fortran sub-routine ®"sgp4m® is called to perform *
* the calculations for orbit prediction. *
*t*****i********i*****tt*******ﬁ********t******************/
#include "pvm3.h" /* INCLUDE PVM FUNCTIONS */
#include <stdio.h>
#include <sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>
main()
(
double results[7*100+1]; /* ARRAY OF RESULTS */
int num_elements=22; /* NUMBER OF FIELDS */
double sat_data[22}; /* ONE SATELLITE INPUT RECORD*/
int sats-l,maxsats;
int sat_no;
int i,j, k, t, r_length; /* COUNTERS */
int tids(32); /* ARRAY OF PROCESSOR IDS */
int mytid, numnode; /* MY PROCESSOR ID */
int me, collector; /* MY INDEX INTO THE TIDS ARRAY */
int master,msgtag, msgtag2=2, msgtag3=3;
struct timeval ts[4];
float $=0.0, u=0.0, totaltime, calc, comm;
extern sgpdm_ (); /* EXTERNAL SUB-ROUTINE */
nmytid = pvm_mytid(); /* ENROLL IN PVM */
master=pvm_parent () ;
/* RZCEIVE MY INDEX AND COLLECTOR'S TID FROM MASTER */

gettimeofday (&ts[0], (struct timeval *)0);

msgtag = 1;

pvm_recv( -1, msgtag );

pvmm_upkint (&me, 1, 1); /*GET MY INDEX IN THE ARRAY OF TIDs*/
pvre_urkint (&collector, 1, 1);
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if (me == 0) /* IF I AM THE COLLECTING NODE */
{

maxsats=collector;
for(i=0; i<maxsats; ++1)
{

pvm_recv( -1, msgtag3);

pvmm_upkint (&sat_no, 1, 1);/* RECEIVE RESULT Sets */

pvin_upkint (&r_length, 1, 1);

pvm_upkdouble (results, r_length, 1);

}

msgtag=5; /* TELL MASTER ALL RESULTS HAVE BEEN received */

pvm_initsend(PvmDataRaw) ;

pvin_send (master, msgtag);

}

else /* If I AM A WORKING NODE */

{

while(sats>0) /* REPEAT UNTIL MASTER SENDS DONE SIGNAL */
{pvm_recv(-1, msgtag2);
pvm_upkint (&sats, 1, 1);
for (i=0; i<sats; ++i)
{ pvm_upkdouble (sat_data, num_elements ,1);
sat_no={(int)sat_data[l];
gettimeofday (&ts[2], (struct timeval *)0);
sgpdm_ (sat_data, results); /* CALL SUB-ROUTINE */
gettimeofday (&ts[3], {struct timeval *)0);
s=s+ts[3].tv_sec-ts{2].tv_sec;
u=u+ts[3].tv_usec-tsf2].tv_usec;
r_length=7*(int)results[0]+1;
pvm_initsend(PvmDataRaw) ;

pvmm_pkint( &sat_no, 1, 1 ); /* SATELLITE NUMBER*/
pvm_pkint ( &r_length, 1, 1);

pvm_pkdouble( results, r_length, 1 ); /*PACK */
pvm_send(collector, msgtag3); /* SEND */

)
)
}/* TIMING STATISTICS TO BE SENT TO MASTER */
gettimeofday (&ts[1l], (struct timeval *)0);
totaltime=(float) (ts[l).tv_sec-ts[0].tv_sec)*1000000+
(float)ts[l]).tv_usec-(float)ts([0]).tv_usec;
calc = s*1000000 + u;
comm = totaltime - calc;
msgtag=4;
pv_initsend (PvmDataRaw) ;
pvm_pkint (&me, 1,1);
if (me == 0)
{
pvm_pklong(&totaltime,1,1);
)
else
{
pvin_pklong(&calc,1,1); pvm_pklong(&comm,1,1);

)

)

pvm_send (master,msgtag) ;pvm_exit();
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/*i*t***’kt*****t**t**t*******t***i**ﬁ*ii*Qt'i***ﬁ*ttt*t*i******

* *
* seq.c LT S.K. BREWER OCT 25 93 *
* *
* This is a sequential version of the satellite orbit *
* prediction program using SGP4. *
* *
ﬁ**t***i**tt**ti***'k****ti**iﬁt**t***'*'****t*i****tti*****tt/
#include «<stdio.h> /* INCLUDE STANDARD 1/0 FUNCTIONS*/
#include <«sys/time.h>
#include <time.h>
#include <math.h>
#include <sys/types.h>
int main(argc, argv) /* GET FILE NAME FROM COMMAND LINE*/
int argc:;
char *argvl(];
{

int iterations=50;

int num_elements=22;

double sat[32000]{22);/*ARRAY OF SATELLITE INPUT DATA */

int its; /* NUMBER OF ITERATIONS OF THE PROGRAM */

int i=0, j, k, t, reading=1;

int numsat=0;

struct timeval ts[4]; /* Number of Time Stamps Required*/

float endtoend=0.0,average=0.0

long readtime;

int sat_no;

double results[7*100+1]);

FILE *infile, *timing;

extern sgpdm_ ();
/* BEGIN READING DATA FILE */
gettimeofday (&ts[0], (struct timeval *)0); /* OPEN DATA FILE*/

if ((infile = fopen(argv[l}, *“r*)) == NULL)
{ printf(*infile = %s did not open\n*, argv[l]);
exit(l);
}

/* READ ENTIRE DATA FILE AT ONCE */
while(reading != EOF)
{ if ((reading = fscanf(infile,"%1f", &sat[numsat])(0])) != EOF)
for (j=1; j<num_elements; ++3j)
fscanf (infile, "%1f", &sat[numsat}[3j)):
numsat=numsat+1l; /* COUNT NUMBER OF SATELLITES IN DATA FILE */
}
fclose(infile);
numsat=numsat-1;
gettimeofday (&ts(1l], (struct timeval *)0); /* END READING DATA FILE */
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/* SET UP FILE FOR TIMING STATISTICS */
timing = fopen("timing.seg", ®"a");
readtime = (ts([l).tv_sec-ts{0].tv_sec)*1000000+
ts[l].tv_usec-ts[0].tv_usec;
for(its=0; its<iterations; ++its)
{
gettimeofday (&ts[2], (struct timeval *)0);
for (i=0; i<numsat; ++1i)
{ sat_no=(int)sat[i]}[1]);
sgpdm_ (sat[i], results);
)
gettimeofday (&ts[3], (struct timeval *)0);
endtoend=(float) (ts[3].tv_sec-ts[2]).tv_sec)*1000000+
(float)ts[3].tv_usec-(float)ts{2].tv_usec;
/* convert to seconds */
endtoend=endtoend/1.0E§;
/* write results to timing output file */

fprintf(timing, "\n Endtoend time (sec) = %6.2f\n",endtoend);

/* Total Time */
average=average+endtoend;

}

average=average/its;

fprintf(timing, "\n Average Endtoend time (sec)= %6.2f\n", average);
fclose(timing);

printf (*\nENTIRE SEQUENCE COMPLETE ");
)
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